Application of Genetic Algorithms in Control of Induction Motor Drives

dc.contributor.advisorBrandštetter, Pavel
dc.contributor.authorTran, Thinh Cong
dc.contributor.refereeLettl, Jiří
dc.contributor.refereeValouch, Viktor
dc.contributor.refereePalacký, Petr
dc.date.accepted2018-12-04
dc.date.accessioned2019-02-08T11:39:52Z
dc.date.available2019-02-08T11:39:52Z
dc.date.issued2018
dc.description.abstractIn this study, mathematical models, as well as induction motor control methods were presented and this thesis specifically emphasized the vector control model for induction motors. A genetic algorithm is also mentioned in detail. The second part contains some applications of genetic algorithms controlling induction motors such as: PID Speed Controller Optimization Using Online Genetic Algorithm for Induction Motor Drive, Rotor Time Constant Estimation of Induction Motor Using online PI-Adaptive and GA-Adaptive Model, Estimation of IM Parameters Using ANN and GA, PI-based Speed Controller for Vector Control Model of the Induction Motor Drive Using GA Tuned Fuzzy algorithm, Parameters Estimation for Sensorless Control of Induction Motor Drive Using Modified GA and CSA Algorithm. Finally, the experimental results consist of the parts: Speed control system with FOC modelling for many different levels using encoder, online GA-PID controller based on genetic algorithm in FOC controller modelling of induction motor, parameters estimation of induction motor using genetic algorithm and ANN with experimental data. The thesis shows that the application of genetic algorithms in induction motor control has many positive effects.en
dc.description.abstractIn this study, mathematical models, as well as induction motor control methods were presented and this thesis specifically emphasized the vector control model for induction motors. A genetic algorithm is also mentioned in detail. The second part contains some applications of genetic algorithms controlling induction motors such as: PID Speed Controller Optimization Using Online Genetic Algorithm for Induction Motor Drive, Rotor Time Constant Estimation of Induction Motor Using online PI-Adaptive and GA-Adaptive Model, Estimation of IM Parameters Using ANN and GA, PI-based Speed Controller for Vector Control Model of the Induction Motor Drive Using GA Tuned Fuzzy algorithm, Parameters Estimation for Sensorless Control of Induction Motor Drive Using Modified GA and CSA Algorithm. Finally, the experimental results consist of the parts: Speed control system with FOC modelling for many different levels using encoder, online GA-PID controller based on genetic algorithm in FOC controller modelling of induction motor, parameters estimation of induction motor using genetic algorithm and ANN with experimental data. The thesis shows that the application of genetic algorithms in induction motor control has many positive effects.cs
dc.description.department430 - Katedra elektronikycs
dc.description.resultvyhovělcs
dc.format98 stran : ilustrace
dc.format.extent8195510 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.locationÚK/Sklad diplomových prací
dc.identifier.otherOSD002
dc.identifier.senderS2724
dc.identifier.signature201900127
dc.identifier.thesisTRA0053_FEI_P2649_2642V004_2018
dc.identifier.urihttp://hdl.handle.net/10084/133977
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.rights.accessopenAccess
dc.subjectInduction motor driveen
dc.subjectvector controlen
dc.subjectsensorless controlen
dc.subjectspeed controlen
dc.subjectadaptive controlen
dc.subjectgenetic algorithmen
dc.subjectPID controlleren
dc.subjectparameters estimationen
dc.subjectrotor time constant estimationen
dc.subjectfuzzy logicen
dc.subjectartificial neural networken
dc.subjectCuckoo search algorithm.en
dc.subjectInduction motor drivecs
dc.subjectvector controlcs
dc.subjectsensorless controlcs
dc.subjectspeed controlcs
dc.subjectadaptive controlcs
dc.subjectgenetic algorithmcs
dc.subjectPID controllercs
dc.subjectparameters estimationcs
dc.subjectrotor time constant estimationcs
dc.subjectfuzzy logiccs
dc.subjectartificial neural networkcs
dc.subjectCuckoo search algorithm.cs
dc.thesis.degree-branchElektrické stroje, přístroje a pohonycs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Fakulta elektrotechniky a informatikycs
dc.thesis.degree-levelDoktorský studijní programcs
dc.thesis.degree-namePh.D.
dc.thesis.degree-programElektrotechnikacs
dc.titleApplication of Genetic Algorithms in Control of Induction Motor Drivesen
dc.title.alternativeApplication of Genetic Algorithms in Control of Induction Motor Drivescs
dc.typeDisertační prácecs

Files

Original bundle

Now showing 1 - 5 out of 5 results
Loading...
Thumbnail Image
Name:
TRA0053_FEI_P2649_2642V004_2018.pdf
Size:
7.82 MB
Format:
Adobe Portable Document Format
Description:
Text práce
Loading...
Thumbnail Image
Name:
TRA0053_FEI_P2649_2642V004_2018_autoreferat.pdf
Size:
4.65 MB
Format:
Adobe Portable Document Format
Description:
Autoreferát
Loading...
Thumbnail Image
Name:
TRA0053_FEI_P2649_2642V004_2018_posudek_oponent_Lettl_Jiri.pdf
Size:
124.46 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta – Lettl, Jiří
Loading...
Thumbnail Image
Name:
TRA0053_FEI_P2649_2642V004_2018_posudek_oponent_Palacky_Petr.pdf
Size:
33.74 KB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta – Palacký, Petr
Loading...
Thumbnail Image
Name:
TRA0053_FEI_P2649_2642V004_2018_posudek_oponent_Valouch_Viktor.pdf
Size:
1.37 MB
Format:
Adobe Portable Document Format
Description:
Posudek oponenta – Valouch, Viktor