Short-term load forecast in electric energy system in Bulgaria

dc.contributor.authorAsenova, Irina
dc.contributor.authorGeorgiev, Dimitar
dc.date.accessioned2011-02-09T11:12:09Z
dc.date.available2011-02-09T11:12:09Z
dc.date.issued2010
dc.description.abstractAs the accuracy of the electricity load forecast is crucial in providing better cost effective risk management plans, this paper proposes a Short Term Electricity Load Forecast (STLF) model with high forecasting accuracy. Two kind of neural networks, Multilayer Perceptron network model and Radial Basis Function network model, are presented and compared using the mean absolute percentage error. The data used in the models are electricity load historical data. Even though the very good performance of the used model for the load data, weather parameters, especially the temperature, take important part for the energy predicting which is taken into account in this paper. A comparative evaluation between a traditional statistical method and artificial neural networks is presented.en
dc.format.extent165254 bytescs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvances in electrical and electronic engineering. 2010, vol. 8, no. 4, p. 102-106.en
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/84190
dc.language.isoenen
dc.publisherVysoká škola báňská - Technická univerzita Ostravaen
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringen
dc.relation.urihttp://advances.utc.sk/index.php/AEEEen
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rights.accessopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.titleShort-term load forecast in electric energy system in Bulgariaen
dc.typearticleen
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
AEEE-2010-8-4-102-asenova.pdf
Size:
161.38 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Item-specific license agreed upon to submission
Description: