Halving complete 4-partite graphs

dc.contributor.authorFronček, Dalibor
dc.contributor.authorSirán, Jozef
dc.date.accessioned2006-11-10T12:31:07Z
dc.date.available2006-11-10T12:31:07Z
dc.date.issued2000
dc.description.abstract-enWe completely determine the spectrum (i.e. set of orders) of complete 4-partite graphs with at most one odd part which are decomposable into two isomorphic factors with a finite diameter. For complete 4-partite graphs with all parts odd we solve the spectrum problem completely for factors with diameter 5. As regards the remaining possible finite diameters, 2,3,4, we present partial results, focusing on decompositions of K-n,K-n,K-n,K-m and K-n,K-n,K-m,K-m for odd m and n.en
dc.identifier.citationArs Combinatoria. 2000, vol. 55, p. 43-63.en
dc.identifier.issn0381-7032
dc.identifier.locationNení ve fondu ÚKen
dc.identifier.urihttp://hdl.handle.net/10084/58073
dc.identifier.wos000086965100004
dc.language.isoenen
dc.publisherCharles Babbage Research Centreen
dc.relation.ispartofseriesArs Combinatoriaen
dc.titleHalving complete 4-partite graphsen
dc.typearticleen

Files