Acoustical user identification based on MFCC analysis of keystrokes

dc.contributor.authorPleva, Matúš
dc.contributor.authorKiktová, Eva
dc.contributor.authorJuhár, Jozef
dc.contributor.authorBours, Patrick
dc.date.accessioned2016-07-14T06:41:15Z
dc.date.available2016-07-14T06:41:15Z
dc.date.issued2015
dc.description.abstractThis paper introduces a novel approach of person identification using acoustical monitoring of typing the required word on the monitored keyboard. This experiment was motivated by the idea of COST IC1106 (Integrating Biometrics and Forensics for the Digital Age) partners to acoustically analyse the captured keystroke dynamics database using widely used time-invariant mathematical models tools. The MFCC (Mel-Frequency Cepstral Coefficients) and HMM (Hidden Markov Models) was introduced in this experiment, which gives promising results of 99.33% accuracy, when testing 25% of realizations (randomly selected from 100) identifying between 50 users/models. The experiment was repeated for different training/testing configurations and cross-validated, so this first approach could be a good starting point for next research including feature selection algorithms, biometric authentication score normalization, different audio & keyboard setup tests, etccs
dc.format.extent899603 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationAdvances in electrical and electronic engineering. 2015, vol. 13, no. 4, p. 309-313 : ill.cs
dc.identifier.doi10.15598/aeee.v13i4.1466
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/111859
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v13i4.1466cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights.accessopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectacoustical analysiscs
dc.subjectbiometricscs
dc.subjectHMMcs
dc.subjectkeystrokecs
dc.subjectMFCCcs
dc.subjectuser identificationcs
dc.titleAcoustical user identification based on MFCC analysis of keystrokescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1466-8461-6-PB.pdf
Size:
878.52 KB
Format:
Adobe Portable Document Format
Description:
publishedVersion

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: