Show simple item record

dc.contributor.authorMudron, Ivan
dc.contributor.authorPodhoranyi, Michal
dc.contributor.authorDevečka, Branislav
dc.contributor.authorBakay, Ladislav
dc.date.accessioned2016-04-01T08:04:19Z
dc.date.available2016-04-01T08:04:19Z
dc.date.issued2013
dc.identifier.citationGeoScience Engineering. 2013, vol. 59, no. 2, p. 25-39 : ill.cs
dc.identifier.issn1802-5420cs
dc.identifier.urihttp://hdl.handle.net/10084/111434
dc.description.abstractThis paper summarizes the methods and results of error modelling and propagation analyses in the Olše and Stonávka confluence area. In terrain analyses, the outputs of the aforementioned analysis are always a function of input. Two approaches according to the input data were used to generate field elevation errors which subsequently entered the error propagation analysis. The main goal solved in this research was to show the importance of input data in slope estimation and to estimate the elevation error propagation as well as to identify DEM errors and their consequences. Dependencies were investigated as well to achieve a better prediction of slope errors. Four different digital elevation model (DEM) resolutions (0.5, 1, 5 and 10 meters) were examined with the Root Mean Square Error (RMSE) rating up to 0.317 meters (10 m DEM). They all originated from a LIDAR survey. In the analyses, a stochastic Monte Carlo simulation was performed with 250 iterations. The article focuses on the error propagation in a large-scale area using high quality input DEM and Monte Carlo methods. The DEM uncertainty (RMSE) was obtained by sampling and ground research (RTK GPS) and from subtraction of two DEMs. According to empirical error distribution a semivariogram was used to model spatially autocorrelated uncertainty in elevation. The second procedure modelled the uncertainty without autocorrelation using a random N(0,RMSE) error generator. Statistical summaries were drawn to investigate the expected hypothesis. As expected, the error in slopes increases with the increasing vertical error in the input DEM. According to similar studies the use of different DEM input data, high quality LIDAR input data decreases the output uncertainty. Errors modelled without spatial autocorrelation do not result in a greater variance in the resulting slope error. In this case, although the slope error results (comparing random uncorrelated and empirical autocorrelated error fields) did not show any statistical significant difference, the input elevation error pattern was not normally distributed and therefore the random error generator realization is not a suitable interpretation of the true state of elevation errors. The normal distribution was rejected because of the high kurtosis and extreme values (outliners). On the other hand, it can show an important insight into the expected elevation and slope errors. Geology does not influence the slope error in the study area.cs
dc.format.extent760653 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesGeoScience Engineeringcs
dc.relation.urihttp://gse.vsb.cz/ojs/GSE/article/view/44/39cs
dc.rights© Vysoká škola báňská-Technická Univerzita Ostrava. Hornicko-geologická fakultacs
dc.subjectUncertaintycs
dc.subjectError propagationcs
dc.subjectMonte Carlo simulationcs
dc.subjectLIDAR-derived DEMcs
dc.subjectSlope estimationcs
dc.titleModelling the uncertainty of slope estimation from a LIDAR-derived DEM: a case study from a large-scale area in the Czech republiccs
dc.title.alternativeModelovanie neistoty vo výpočte sklonov z LIDAR-ových DMR: prípadová štúdia vybraného malého územia v ČRcs
dc.typearticlecs
dc.description.abstract-enTáto práca zhŕňa metódu a výsledky modelovania chýb a analýzu šírenia chýb vo výpočte sklonov z DMR získaných LIDAR-om v skúmanej lokalite okolia sútoku riek Olše a Stonávka. V terénnych analýzach výstupy uvedenej analýzy sú vždy funkciou vstupu. Na generovania pola výškových chýb boli použité dve rozdielne metódy podľa vstupných dát. Modelované chyby v nadmorských výškach následne vstupovali do analýzy šírenia chýb. Hlavným cieľom práce bolo tak ako aj poukázanie na význam kvality vstupných dát vo výpočte sklonov a odhad šírenej chyby z nadmorských výšok v sklonoch tak aj identifikácia chýb v DMR a ich dopad. Závislosti chýb boli vyhodnotené hlavne pre lepší odhad chyby v sklonoch. V simuláciách boli použité 4 vstupné DMR s rozlíšením 0.5, 1, 5 a 10 metrov s RMSE chybou do 0.317 metra (10 m DMR). Všetky DMR boli získané z mračna bodov získaných LIDAR metódou zberu dát. Šírenie chýb bolo modelované pomocou stochastickej simulácie Monte Carlo s 250 iteráciami. Článok sa zameriava na šírenie chýb z vysoko presných vstupných dát na malom území. RMSE chyba bola získaná v prvom prípade z dát získaných terénnym prieskumom (RTK GPS) a v druhom prípade z porovnania dvoch kvalitatívne rozdielnych DMR. V prvom prípade sa vypočítali chyby vo výškach pomocou náhodného generátora chýb bez autokorelácie chýb. V druhom prípade sa s pomocou semivariogramu namodelovalo autokorelované pole chýb vo výškach. Použitím vhodných štatistík boli odvodené výsledky simulácie a overené stanovené hypotézy. Tak ako sa očakávalo chyby v sklonoch sú vyššie s zvyšujúcou sa chybou v nadmorských výškach. Tiež závislosti chýb od vypočítaných sklonov boli preskúmané, kde sa potvrdila závislosť chýb na sklonoch. Na druhej strane geológia nemala žiaden vplyv na chybu v sklonoch. Chyby namodelované bez autokorelácie nevedú vo väčšine prípadov k štatisticky významnej odchýlke. Vzhľadom však k rozmiestneniu chýb v priestore (vysoká autokorelácia, zamietnutie normálneho rozdelenia pre vysokú špicatosť a extrémne hodnoty) nie je táto metóda vhodná. Napriek tomu dáva dobrú možnosť nahliadnutia do očakávanej chyby v sklonoch a nadmorských výškach.cs
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

  • OpenAIRE [5085]
    Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).
  • GeoScience Engineering. 2013, vol. 59 [21]

Show simple item record