Zobrazit minimální záznam

dc.contributor.authorViszlay, Peter
dc.contributor.authorEcegi, Marek
dc.contributor.authorJuhár, Jozef
dc.date.accessioned2016-07-14T06:30:17Z
dc.date.available2016-07-14T06:30:17Z
dc.date.issued2015
dc.identifier.citationAdvances in electrical and electronic engineering. 2015, vol. 13, no. 4, p. 295-302 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/111857
dc.description.abstractIn this paper, we present a cluster-dependent adaptation approach for HMM-based acoustic models. The proposed approach employs clustering techniques to group the original training utterances into clusters with predefined number. The clustered speech data are intended to adapt an initially pre-trained acoustic model to the specific cluster by reestimation based on the standard Baum-Welch procedure. The resulting model, adapted to the homogeneous data may markedly improve the baseline recognition rate, whereas the model complexity may be reduced. In the recognition step, the test samples are scored by each adapted model and the most accurate one is chosen. The proposed approach is thoroughly evaluated in Slovak triphone-based large vocabulary continuous speech recognition (LVCSR) system. The results prove that the cluster-sensitive retraining leads to significant improvements over the baseline reference system trained according to the conventional training procedure.cs
dc.format.extent759835 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v13i4.1448cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectacoustic modelcs
dc.subjectadaptationcs
dc.subjectcluster analysiscs
dc.subjectreestimationcs
dc.subjectweighted mean vectorcs
dc.titleImproving the Slovak LVCSR performance by cluster-sensitive acoustic model retrainingcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v13i4.1448
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava