Show simple item record

dc.contributor.authorKamencay, Patrik
dc.contributor.authorHudec, Róbert
dc.contributor.authorBenčo, Miroslav
dc.contributor.authorSýkora, Peter
dc.contributor.authorRadil, Roman
dc.date.accessioned2016-07-14T08:54:14Z
dc.date.available2016-07-14T08:54:14Z
dc.date.issued2015
dc.identifier.citationAdvances in electrical and electronic engineering. 2015, vol. 13, no. 4, p. 399-406 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/111872
dc.description.abstractIn this paper, a novel face recognition system for face recognition and identification based on a combination of Principal Component Analysis and Kernel Canonical Correlation Analysis (P-KCCA) using Support Vector Machine (SVM) is proposed. First, the P-KCCA method is utilized to detect and extract the important features from the input images. This method makes it possible to match the 2D face image with enrolled 3D face data. The resulting features are then classified using the SVM method. The proposed methods were tested on TEXAS database with 200 subjects. The experimental results in the TEXAS face database produce interesting results from the point of view of recognition success, rate, and robustness of the face recognition algorithm. We compare the performance of our proposed face recognition method to other commonly-used methods. The experimental results show that the combination of P-KCCA method using SVM achieves a higher performance compared to the alone PCA, CCA and KCCA algorithms.cs
dc.format.extent2634017 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v13i4.1473cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCCAcs
dc.subjectface recognitioncs
dc.subjectimage classificationcs
dc.subjectKCCAcs
dc.subjectPCAcs
dc.subjectSVMcs
dc.subjectTEXAS databasecs
dc.titleAn efficient P-KCCA algorithm for 2D-3D face recognition using SVMcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v13i4.1473
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Vysoká škola báňská - Technická univerzita Ostrava
Except where otherwise noted, this item's license is described as © Vysoká škola báňská - Technická univerzita Ostrava