Zobrazit minimální záznam

dc.contributor.authorFalát, Lukáš
dc.contributor.authorMarček, Dušan
dc.date.accessioned2016-10-04T07:26:57Z
dc.date.available2016-10-04T07:26:57Z
dc.date.issued2014
dc.identifier.citationAdvances in electrical and electronic engineering. 2014, vol. 12, no. 4, p. 307-318 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/112116
dc.description.abstractIn this paper, authors apply feed-forward artificial neural network (ANN) of RBF type into the process of modelling and forecasting the future value of USD/CAD time series. Authors test the customized version of the RBF and add the evolutionary approach into it. They also combine the standard algorithm for adapting weights in neural network with an unsupervised clustering algorithm called K-means. Finally, authors suggest the new hybrid model as a combination of a standard ANN and a moving average for error modeling that is used to enhance the outputs of the network using the error part of the original RBF. Using high-frequency data, they examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, authors perform the comparative out-of-sample analysis of the suggested hybrid model with statistical models and the standard neural network.cs
dc.format.extent780642 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v12i4.1206cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectartificial neural networkcs
dc.subjectgeneric algorithmcs
dc.subjecthybrid modelcs
dc.subjectRBFcs
dc.subjecttime seriescs
dc.subjectUSD/CADcs
dc.titleFinancial time series modelling with hybrid model based on customized RBF neural network combined with genetic algorithmcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v12i4.1206
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava