Zobrazit minimální záznam

dc.contributor.authorJahan, Ibrahim Salem
dc.contributor.authorPrilepok, Michal
dc.contributor.authorSnášel, Václav
dc.contributor.authorPenhaker, Marek
dc.date.accessioned2016-11-18T11:26:10Z
dc.date.available2016-11-18T11:26:10Z
dc.date.issued2014
dc.identifier.citationAdvances in electrical and electronic engineering. 2014, vol. 12, no. 5, p. 547-556 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/116403
dc.description.abstractThe Electroencephalography (EEG) is the recording of electrical activity along the scalp. This recorded data are very complex. EEG has a big role in several applications such as in the diagnosis of human brain diseases and epilepsy. Also, we can use the EEG signals to control an external device via Brain Computer Interface (BCI) by our mind. There are many algorithms to analyse the recorded EEG data, but it still remains one of the big challenges in the world. In this article, we extended our previous proposed method. Our extended method uses Self-organizing Map (SOM) as an EEG data classifier. The proposed method we can divide in following steps: capturing EEG raw data from the sensors, applying filters on this data, we will use the frequencies in the range from 0.5~Hz to 60~Hz, smoothing the data with 15-th order of Polynomial Curve Fitting, converting filtered data into text using Turtle Graphic, Lempel-Ziv complexity for measuring similarity between two EEG data trials and Self-Organizing Map Neural Network as a final classifiers. The experiment results show that our model is able to detect up to 96% finger movements correctly.cs
dc.format.extent660272 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v12i5.1171cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectEEG datacs
dc.subjectelectroencephalographcs
dc.subjectpolynomial curve fittingcs
dc.subjectSOMcs
dc.subjectunsupervised learningcs
dc.titleSimilarity analysis of EEG data based on self organizing map neural networkcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v12i5.1171
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava