Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorBeremlijski, Petr
dc.date.accessioned2017-11-27T11:48:10Z
dc.date.available2017-11-27T11:48:10Z
dc.date.issued2017
dc.identifier.citationAdvances in electrical and electronic engineering. 2017, vol. 15, no. 2, p. 215-222cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/121807
dc.description.abstractThe classical convergence theory of the augmented Lagrangian method has been developed under the assumption that the solutions satisfy a constraint qualification. The point of this note is to show that the constraint qualification can be limited to the constraints that are not enforced by the Lagrange multipliers. In particular, it follows that if the feasible set is non-empty and the inequality constraints are convex and separable, then the convergence of the algorithm is guaranteed without any additional assumptions. If the feasible set is empty and the projected gradients of the Lagrangians are forced to go to zero, then the iterates are shown to converge to the nearest well posed problem.cs
dc.format.extent3503685 bytes
dc.format.mimetypeapplication/pdf
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v15i2.2219
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAugmented Langrangianscs
dc.subjectconstraint qualificationcs
dc.subjectKKT conditionscs
dc.subjectquadratically constrained quadratic programcs
dc.subjectSMALSE-Mcs
dc.titleOn convergence of inexact augmented lagrangians for separable and equality convex QCQP problems without constraint qualificationcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v15i2.2219
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed
dc.identifier.wos000409044400011


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/