Show simple item record

dc.contributor.authorStraková, Erika
dc.contributor.authorLukáš, Dalibor
dc.contributor.authorVodstrčil, Petr
dc.date.accessioned2017-11-28T06:45:28Z
dc.date.available2017-11-28T06:45:28Z
dc.date.issued2017
dc.identifier.citationAdvances in electrical and electronic engineering. 2017, vol. 15, no. 2, p. 286-295cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/121828
dc.description.abstractA numerical method for computing zeros of analytic complex functions is presented. It relies on Cauchy's residue theorem and the method of Newton's identities, which translates the problem to finding zeros of a polynomial. In order to stabilize the numerical algorithm, formal orthogonal polynomials are employed. At the end the method is adapted to finding eigenvalues of a matrix pencil in a bounded domain in the complex plane. This work is based on a series of papers of Professor Sakurai and collaborators. Our aim is to make their work available by means of a systematic study of properly chosen examples.cs
dc.format.extent633426 bytes
dc.format.mimetypeapplication/pdf
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v15i2.2252
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcontour integral methodcs
dc.subjectformal orthogonal polynomialscs
dc.subjectgeneralized eigenvalue problemcs
dc.subjectzeros of analytic functionscs
dc.titleFinding zeros of analytic functions and local eigenvalue analysis using contour integral method in examplescs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v15i2.2252
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed
dc.identifier.wos000409044400020


Files in this item

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/