Show simple item record

dc.contributor.authorKamencay, Patrik
dc.contributor.authorBenčo, Miroslav
dc.contributor.authorMiždoš, Tomáš
dc.contributor.authorRadil, Roman
dc.date.accessioned2018-01-22T11:20:00Z
dc.date.available2018-01-22T11:20:00Z
dc.date.issued2017
dc.identifier.citationAdvances in electrical and electronic engineering. 2017, vol. 15, no. 4, p. 663-672 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/123260
dc.description.abstractIn this paper, the performance of the proposed Convolutional Neural Network (CNN) with three well-known image recognition methods such as Principal Component Analysis (PCA), Local Binary Patterns Histograms (LBPH) and K–Nearest Neighbour (KNN) is tested. In our experiments, the overall recognition accuracy of the PCA, LBPH, KNN and proposed CNN is demonstrated. All the experiments were implemented on the ORL database and the obtained experimental results were shown and evaluated. This face database consists of 400 different subjects (40 classes/ 10 images for each class). The experimental result shows that the LBPH provide better results than PCA and KNN. These experimental results on the ORL database demonstrated the effectiveness of the proposed method for face recognition. For proposed CNN we have obtained a best recognition accuracy of 98.3 %. The proposed method based on CNN outperforms the state of the art methods.cs
dc.format.extent1244451 bytes
dc.format.mimetypeapplication/pdf
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v15i4.2389
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectface recognition systemcs
dc.subjectKNNcs
dc.subjectLBPHcs
dc.subjectneural networkscs
dc.subjectPCAcs
dc.titleA new method for face recognition using convolutional neural networkcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v15i4.2389
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Vysoká škola báňská - Technická univerzita Ostrava
Except where otherwise noted, this item's license is described as © Vysoká škola báňská - Technická univerzita Ostrava