Show simple item record

dc.contributor.authorTovárek, Jaromír
dc.contributor.authorVozňák, Miroslav
dc.contributor.authorRozhon, Jan
dc.contributor.authorŘezáč, Filip
dc.contributor.authorŠafařík, Jakub
dc.contributor.authorPartila, Pavol
dc.date.accessioned2018-05-22T07:38:48Z
dc.date.available2018-05-22T07:38:48Z
dc.date.issued2018
dc.identifier.citationAdvances in electrical and electronic engineering. 2018, vol. 16, no. 1, p. 118-124cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/127128
dc.description.abstractThis paper describes different approaches for the face authentication from the features and classification abilities point of view. Authors compare two types of features - Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) including their combination. These parameters are classified using Multilayer Neural Network (MLNN) and Support Vector Machines (SVM). Face authentication consists of several steps. The first step contains Viola-Jones algorithm for face detection. Authors resize the detected face for a fixed vector and afterwards, it is converted into grayscale. Next, feature extraction with a simple Min-Max normalization is applied. Obtained parameters are evaluated by classifiers and for each detected face, authors get posterior probability as the output of the classifier. Different approaches for face authentication are compared with each other using False Acceptance Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER), Receiver Operating Characteristic (ROC) and Detection Error Tradeoff (DET) curves. The results are verified with AR Face Database and elaborated in a feature extraction and classifier design point of view. Best results were achieved by HOG feature for SVM classifier. Detailed results are listed in the text belowcs
dc.format.extent416348 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v16i1.2547cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectface authenticationcs
dc.subjectHOGcs
dc.subjectLBPcs
dc.subjectMLNNcs
dc.subjectSVMcs
dc.titleDifferent approaches for face authentication as part of a multimodal biometrics systemcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v16i1.2547
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.identifier.wos000429160100013


Files in this item

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/