Zobrazit minimální záznam

dc.contributor.authorNguyen, Thanh Hai,
dc.contributor.authorNguyen, Nghia Thanh
dc.contributor.authorNguyen, Manh Hung
dc.contributor.authorLivatino, Salvatore
dc.date.accessioned2019-10-15T07:06:16Z
dc.date.available2019-10-15T07:06:16Z
dc.date.issued2019
dc.identifier.citationAdvances in electrical and electronic engineering. 2019, vol. 17, no. 3, p. 306-319 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/138847
dc.description.abstractHeart disease classification plays an important role in clinical diagnoses. The performance improvement of an Electrocardiogram classifier is therefore of great relevance, but it is a challenging task too. This paper proposes a novel classification algorithm using the kernel method. A kernel is constructed based on wavelet coefficients of heartbeat signals for a classifier with high performance. In particular, a wavelet packet decomposition algorithm is applied to heartbeat signals to obtain the Approximation and Detail coefficients, which are used to calculate the parameters of the kernel. A principal component analysis algorithm with the wavelet-based kernel is employed to choose the main features of the heartbeat signals for the input of the classifier. In addition, a neural network with three hidden layers in the classifier is utilized for classifying five types of heart disease. The electrocardiogram signals in nine patients obtained from the MIT-BIH database are used to test the proposed classifier. In order to evaluate the performance of the classifier, a multi-class confusion matrix is applied to produce the performance indexes, including the Accuracy, Recall, Precision, and F1 score. The experimental results show that the proposed method gives good results for the classification of the five mentioned types of heart disease.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v17i3.3270cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectback-propagation neural networkcs
dc.subjectelectrocardiogram signalscs
dc.subjectheart disease classificationcs
dc.subjectwavelet-based kernel principal component analysiscs
dc.subjectwavelet coefficientscs
dc.titleWavelet-Based Kernel Construction for Heart Disease Classificationcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v17i3.3270
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava