Show simple item record

dc.contributor.authorŠátek, Václav
dc.contributor.authorVeigend, Petr
dc.contributor.authorNečasová, Gabriela
dc.date.accessioned2019-10-15T07:56:20Z
dc.date.available2019-10-15T07:56:20Z
dc.date.issued2019
dc.identifier.citationAdvances in electrical and electronic engineering. 2019, vol. 17, no. 3, p. 352-359 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/138851
dc.description.abstractThis paper deals with the extremely precise, stable and fast solution of the ordinary differential equations. The solution of these is performed using a method based on the Taylor series - The Modern Taylor Series Method. The paper investigates two problems to demonstrate the positive properties of the method: linear problem - the behavior of signal transmission on the telegraph line and a non-linear problem - the Van der Pol oscillator. Both problems were analyzed and solved using newly implemented MATLAB Modern Taylor Series Method solvers. The results were then compared to the state-of-the-art MATLAB solvers.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v17i3.3369cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectinitial value problemscs
dc.subjectMATLABcs
dc.subjectordinary differential equationscs
dc.subjectTaylor series methodcs
dc.subjecttelegraph linecs
dc.subjectVan der Pol oscillatorcs
dc.titleTaylor Series Based Integration in Electric Circuits Simulationscs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v17i3.3369
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Vysoká škola báňská - Technická univerzita Ostrava
Except where otherwise noted, this item's license is described as © Vysoká škola báňská - Technická univerzita Ostrava