Zobrazit minimální záznam

dc.contributor.authorSharma, Deepa
dc.contributor.authorSinghai, Jyoti
dc.date.accessioned2020-08-26T06:53:45Z
dc.date.available2020-08-26T06:53:45Z
dc.date.issued2020
dc.identifier.citationAdvances in electrical and electronic engineering. 2020, vol. 18, no. 1, p. 41 - 49 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/141756
dc.description.abstractThe paper presents histogram-based initialzation of Fuzzy C Means (FCM) clustering algorithm for remote sensing image analysis. The drawback of well known FCM clustering is sensitive to the choice of initial cluster centers. In order to overcome this drawback, the proposed algorithm, first, determines the optimal initial cluster centers by maximizing the histogram-based weight function. By using these initial cluster centers, the given image is segmented using fuzzy clustering. The major contribution of the proposed method is the automatic initialization of the cluster centers and hence, the clustering performance is enhanced. Also, it is empirically free of experimentally set parameters. Experiments are performed on remote sensing images and cluster validity indices Davies-Bouldin, Partition index, Xie-Beni, Partition Coefficient and Partition Entropy are computed and compared with prominent methods such as FCM, K-Means, and automatic histogram based FCM. The experimental outcomes show that the proposed method is competent for remote sensing image segmentation.cs
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v18i1.3328
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectautomatic initialization of cluster centerscs
dc.subjectFuzzy C Means clusteringcs
dc.subjectremote sensing imagerycs
dc.titleFuzzy Clustering Algorithm with Histogram Based Initialization for Remotely Sensed Imagerycs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v18i1.3328
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava