Zobrazit minimální záznam

dc.contributor.authorEl Merrassi, Weam
dc.contributor.authorAbounada, Abdelouahed
dc.contributor.authorRamzi, Mohamed
dc.date.accessioned2020-10-12T11:54:09Z
dc.date.available2020-10-12T11:54:09Z
dc.date.issued2020
dc.identifier.citationAdvances in electrical and electronic engineering. 2020, vol. 18, no. 3, p. 132 - 141 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/142293
dc.description.abstractThe DC-DC converter is majorly used in several renewable energy applications. It is usually relevant in a hard-switching operating mode at the cost of increasing power losses and declining efficiency. Power losses are comprised of switching losses and conduction losses, which affect the reliability and speed up the aging of the switch. Therefore, soft-switching techniques are inescapable to reduce electromagnetic interference EMI, minimize losses, and enhance power conversion efficiency. Among the sundry techniques of soft-switching, passive snubbers are uncomplicated and vigorous, besides it has been spotlighted as a finer alternative compared to the active snubbers that involve extra switches and an additional control circuit. This paper investigates the power loss of a conventional solar DC-DC static converter designed and controlled through Maximum Power Point Tracking (MPPT). It evaluates the switch's temperature in the hard-switching operating mode. Besides, this paper presents a new research initiative that aims to allow a zero switching and stabilizing the temperature of the switch through a novel approach of design for RLD and RCD snubber cells. This new design allows the switch to achieve soft-switching, by abolishing the voltage stress, minimizing the power losses, and stabilizing the junction temperature. This snubber has a simple structure with a few components and ease of control, which helps to upgrade the power conversion efficiency through controlling the high voltage and current stress in the switch. In this treatise, elements of the snubber are designed and adjusted for maximum reliability through the simulation in OrCAD environment. Furthermore, the effectiveness of the model is approved through experimental results on a 1600 W conventional boost to validate the proposal.cs
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v18i3.3699
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectContinuous Conduction Mode (CCM)cs
dc.subjectDC-DC convertercs
dc.subjectpassive snubbercs
dc.subjectsoft-switching reverse-recovery losscs
dc.subjectZero Current Switching (ZCS)cs
dc.subjectZero Voltage Switching (ZVS)cs
dc.titleSwitching Losses Analysis of a Constructed Solar DC-DC Static Boost Convertercs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v18i3.3699
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava