Zobrazit minimální záznam

dc.contributor.authorShabbir, Noman
dc.contributor.authorKutt, Lauri
dc.contributor.authorJawad, Muhammad
dc.contributor.authorIqbal, Muhammad Naweed
dc.contributor.authorGhahfaroki, Payam Shams
dc.date.accessioned2020-10-13T05:52:47Z
dc.date.available2020-10-13T05:52:47Z
dc.date.issued2020
dc.identifier.citationAdvances in electrical and electronic engineering. 2020, vol. 18, no. 3, p. 190 - 197 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/142302
dc.description.abstractEnergy forecasting for both consumption and production is a challenging task as it involves many variable factors. It is necessary to calculate the actual production of energy and its consumption as it is very beneficial in maintaining demand and supply. The reliability and smooth functioning of any electrical system are dependent on this management. In this article, the Recurrent Neural Network (RNN) based algorithm is used for energy forecasting. The algorithm is used for making three days ahead prediction of energy for both generation and consumption in Estonia. A comparison is also made between our proposed algorithm and the forecasting algorithm used by Estonian energy regulatory authority. The results of both algorithms indicate that our proposed algorithm has lower Root Mean Square Error (RMSE) and is giving better forecasting.cs
dc.languageNeuvedenocs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://dx.doi.org/10.15598/aeee.v18i3.3597
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectforecastingcs
dc.subjectenergy consumptioncs
dc.subjectenergy generationcs
dc.subjectmachine learningcs
dc.subjectneural networkscs
dc.titleForecasting of Energy Consumption and Production Using Recurrent Neural Networkscs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v18i3.3597
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava