Show simple item record

dc.contributor.authorRadi, Davide
dc.date.accessioned2021-03-11T10:32:30Z
dc.date.available2021-03-11T10:32:30Z
dc.date.issued2018
dc.identifier.citationEkonomická revue. 2018, roč. 21, č. 3, s. 81-88 : il.cs
dc.identifier.issn1212-3951cs
dc.identifier.urihttp://hdl.handle.net/10084/142945
dc.description.abstractThis paper focuses on the robust games proposed by Aghassi and Bertsimas (2006). They represent a distribution free modelling framework for incomplete-information games, in which players are uncertain about the values of the parameters that define their own payoff functions. Each player is uncertainty averse in the sense that he/she max imizes his/her worst-case payoff. Such a player is named a robust player, and a solution to this game is called a robust-optimization equilibrium. By focusing on non-cooperative, simultaneous-move, one-shot, finite games, we consider a general setting that includes both matrix and non-matrix games. Sufficient conditions for the existence of a robust-optimization equilibrium are provided. The result of existence proposed here is based on the Kakutani Fixed-Point Theorem. A few examples are provided that also include a robust duopoly game.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesEkonomická revuecs
dc.relation.urihttps://dokumenty.vsb.cz/docs/files/cs/cd63b7a8-8f58-4031-ad15-1b0eb836dd4dcs
dc.rights© Vysoká škola báňská - Technická univerzita Ostravacs
dc.subjectduopoly gamescs
dc.subjectrobust gamescs
dc.subjectrobust-optimization equilibriumcs
dc.titleA Robust-optimization Approach to Uncertainty in Static Gamescs
dc.typearticlecs
dc.identifier.doi10.7327/cerei.2018.09.03cs
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

Show simple item record