Zobrazit minimální záznam

dc.contributor.authorAbdulwahhab, Ali Hussein
dc.contributor.authorMyderrizi, Indrit
dc.contributor.authorMahmood, Musaria Karim
dc.date.accessioned2022-07-25T08:55:34Z
dc.date.available2022-07-25T08:55:34Z
dc.date.issued2022
dc.identifier.citationAdvances in electrical and electronic engineering. 2022, vol. 20, no. 2, p. 216 - 224 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/146403
dc.description.abstractBrain Computer Interface enables indi- viduals to communicate with devices through Elec- troEncephaloGraphy (EEG) signals in many applica- tions that use brainwave-controlled units. This paper presents a new algorithm using EEG waves for control- ling the movements of a drone by eye-blinking and at- tention level signals. Optimization of the signal recog- nition obtained is carried out by classifying the eye- blinking with a Support Vector Machine algorithm and converting it into 4-bit codes via an artificial neural network. Linear Regression Method is used to cate- gorize the attention to either low or high level with a dynamic threshold, yielding a 1-bit code. The con- trol of the motions in the algorithm is structured with two control layers. The first layer provides control with eye-blink signals, the second layer with both eye-blink and sensed attention levels. EEG signals are extracted and processed using a single channel NeuroSky Mind- Wave 2 device. The proposed algorithm has been vali- dated by experimental testing of five individuals of dif- ferent ages. The results show its high performance compared to existing algorithms with an accuracy of 91.85 % for 9 control commands. With a capability of up to 16 commands and its high accuracy, the algorithm can be suitable for many applicationscs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v20i2.4413cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectattention levelcs
dc.subjectBrain Computer Interface (BCI)cs
dc.subjectElectroEncephaloGraphy (EEG)cs
dc.subjecteye-blinkcs
dc.subjectNeuroSky MindWave 2cs
dc.titleDrone Movement Control by Electroencephalography Signals Based on BCI Systemcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v20i2.4413
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava