Zobrazit minimální záznam

dc.contributor.authorDrong, Mariusz
dc.contributor.authorDems, Maciej
dc.contributor.authorPeřina Jr., Jan
dc.contributor.authorFördös, Tibor
dc.contributor.authorJaffrès, Henri-Yves
dc.contributor.authorPostava, Kamil
dc.contributor.authorDrouhin, Henri-Jean
dc.date.accessioned2022-09-27T13:04:12Z
dc.date.available2022-09-27T13:04:12Z
dc.date.issued2022
dc.identifier.citationJournal of Lightwave Technology. 2022, vol. 40, issue 14, p. 4735-4745.cs
dc.identifier.issn0733-8724
dc.identifier.issn1558-2213
dc.identifier.urihttp://hdl.handle.net/10084/148651
dc.description.abstractWe present a theoretical framework, which successfully combines two different fields of photonics: i) the laser rate equations and ii) the cavity perturbation theory, focusing particularly on micro-cavity lasers with optical anisotropies. Our approach is formally analogous to quantum-mechanical time-dependent perturbation theory, in which however the gain medium and permittivity tensor distribution are perturbed instead of the Hamiltonian. Using the general vectorial Maxwell-Bloch equations as a starting point, we derive polarization-resolved coupled-mode equations, in which all relevant geometric and anisotropy-related laser parameters are imprinted in its coefficients. Closed-form coupled-mode equations offer physical insights like rate equations approaches and the precision comparable to brute-force numeric routines, thus being the time-saving alternative to finite-difference time-domain methods. The main advantage is that one calculates numerically the shapes of cold-cavity modes used to derive coupled-mode equations for one set of parameters and the broad landscape of parameters of interest is further studied in a perturbative way. This makes the method particularly interesting for semi-analytic studies of state-of-art devices such as the photonic crystal lasers, the liquid-crystal lasers or specifically spin-lasers, in which the interplay between injected spin and cavity birefrigence creates very promising platform for ultrafast data transfer technologies.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesJournal of Lightwave Technologycs
dc.relation.urihttps://doi.org/10.1109/JLT.2022.3168231cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectanisotropiescs
dc.subjectcavity perturbation theorycs
dc.subjectmicro-cavity laserscs
dc.subjectpolarization dynamicscs
dc.subjectrate equationscs
dc.titleTime-dependent laser cavity perturbation theory: Exploring future nano-structured photonic devices in semi-analytic waycs
dc.typearticlecs
dc.identifier.doi10.1109/JLT.2022.3168231
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume40cs
dc.description.issue14cs
dc.description.lastpage4745cs
dc.description.firstpage4735cs
dc.identifier.wos000824670400011


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

http://creativecommons.org/licenses/by/4.0/
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je http://creativecommons.org/licenses/by/4.0/