Zobrazit minimální záznam

dc.contributor.authorVeeramsett, Venkataramana
dc.contributor.authorVaishnavi, Gudelli Sushma
dc.contributor.authorKumar, Modem Sai Pavani
dc.contributor.authorKiran, Prabhu
dc.contributor.authorSumanth, Sumanth
dc.contributor.authorPrasanna, Potharaboina
dc.contributor.authorSalkuti, Surender Reddy
dc.date.accessioned2023-04-14T08:44:39Z
dc.date.available2023-04-14T08:44:39Z
dc.date.issued2022
dc.identifier.citationAdvances in electrical and electronic engineering. 2022, vol. 20, no. 4, p. 432 - 443 ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/149246
dc.description.abstractShort-term electric power load forecasting is a critical and essential task for utilities of the elec- tric power industry for proper energy trading and that enable the independent system operator to operate the network without any technical and economical is- sues. In this paper, machine learning model such as linear regression model is used to forecast the active power load one hour and one day ahead. Real time active power load data to train and test the machine learning model is collected from a 33/11 kV substation located in Telangana State, India. Based on the simu- lation results, it is observed that linear regression model can forecast the load with less mean absolute error i.e. 0.042 with training data and 0.045 with testing data in comparison with support vector regressor model for an hour ahead operation. Whereas in the case of the day ahead operation, linear regression model can forecast the load with less mean absolute error i.e. 0.055 with training data and 0.057 with testing data in comparison with support vector regressor model. A platform independent web application is developed to help the operators of the 33/11 kV substation which is located in Godishala, Telangana State, India.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v20i4.4561cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectday ahead forecastingcs
dc.subjecthourly ahead forecastingcs
dc.subjectlinear regression modelcs
dc.subjectload forecastingcs
dc.subjectweb applicationcs
dc.titleA Platform Independent Web-Application for Short-Term Electric Power Load Forecasting on a 33/11 kV Substation Using Regression Modelcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v20i4.4561
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava