Show simple item record

dc.contributor.authorVeeramsetty, Venkataramana
dc.contributor.authorJadhav, Pravallika
dc.contributor.authorRamesh, Eslavath
dc.contributor.authorSrinivasula, Srividya
dc.contributor.authorSalkuti, Surender Reddy
dc.date.accessioned2023-04-14T08:53:03Z
dc.date.available2023-04-14T08:53:03Z
dc.date.issued2022
dc.identifier.citationAdvances in electrical and electronic engineering. 2022, vol. 20, no. 4, p. 444 - 477 : illcs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/149247
dc.description.abstractZero-crossing point detection in a sinusoidal signal is essential in the case of various power systems and power electronics applications like power system protection and power converters controller design. In this paper, 96 data sets are created from a distorted sinusoidal signal based on MATLAB simulation. Dis- torted sinusoidal signals are generated in MATLAB with various noise and harmonic levels. In this pa- per, a decision tree classi er is used to predict the zero crossing point in a distorted signal based on input fea- tures like slope, intercept, correlation and Root Mean Square Error (RMSE). Decision tree classi er model is trained and tested in the Google Colab environment. As per simulation results, it is observed that decision tree classi er is able to predict the zero-crossing points in a distorted signal with maximum accuracy of 98.3 % for noise signals and 100 % for harmonic distorted signals.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v20i4.4562cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectdecision treecs
dc.subjectdistorted sinusoidal signalcs
dc.subjectharmonicscs
dc.subjectnoisecs
dc.subjectzero-crossing pointcs
dc.titleZero Crossing Point Detection in a Distorted Sinusoidal Signal Using Decision Tree Classifiercs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v20i4.4562
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

Show simple item record

© Vysoká škola báňská - Technická univerzita Ostrava
Except where otherwise noted, this item's license is described as © Vysoká škola báňská - Technická univerzita Ostrava