Zobrazit minimální záznam

dc.contributor.authorNamrata, Kumari
dc.contributor.authorKumar, Mantosh
dc.contributor.authorKumar, Nishant
dc.date.accessioned2023-04-14T10:34:27Z
dc.date.available2023-04-14T10:34:27Z
dc.date.issued2022
dc.identifier.citationAdvances in electrical and electronic engineering. 2022, vol. 20, no. 4, p. 549 - 559 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/149253
dc.description.abstractThe uncertainty of the non-conventional sources especially solar energy caused due to spatio- temporal factors like temperature, pressure, relative humidity etc. is continuously disrupting the productivity and reliability of an integrated power system which motivates the researcher or energy industry for strategic forecasting solutions to enhance the proper scheduling and control of solar generation power plants. Several studies have been carried out; but still the objective of achieving accurate forecasting dependent on the spatio- temporal features is not achieved. To address this critical forecasting issue in this research article a hyper parametric tuning of the Extreme Gradient Boosting (XGB) machine learning model has been carried out using two met heuristic algorithms: Moth Flame Optimiza- tion (MFO) and Grey Wolf Optimization (GWO). The dataset comprises five years of metrological at- tributes collected from the National Renewable Energy Laboratory (NREL) for analysis. The validation of the proposed model has been done based on the five statistical errors: Max Error (ME), Mean Absolute Error (MAE), Coefficient of Determination (R2), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The regressive assessment of all three models has confirmed that the XGB-MFO model out- performed the others as showing the highest R2 score of 0.9337, 0.9011, 0.8744 and lowest RMSE values of 76.29 W·m−2, 41.90W·m−2 and 95.94W·m−2 for Global Horizontal Irradiance (GHI), Diffuse Horizon- tal Irradiance (DHI) and Direct Normal Irradiance (DNI) respectively which ensures the proposed model implementation for the prediction and production of solar power.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v20i4.4650cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectExtreme Gradient Boostingcs
dc.subjectforecastingcs
dc.subjectGrey Wolf Optimizationcs
dc.subjectMoth Flame Optimizationcs
dc.subjectsolar irradiancecs
dc.titleData-Driven Hyperparameter Optimized Extreme Gradient Boosting Machine Learning Model for Solar Radiation Forecastingcs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v20i4.4650
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava