Zobrazit minimální záznam

dc.contributor.authorDivandari, Mohammad
dc.contributor.authorGhabi, Delaram
dc.contributor.authorKalteh, Abdol Aziz
dc.date.accessioned2024-03-26T08:32:45Z
dc.date.available2024-03-26T08:32:45Z
dc.date.issued2023
dc.identifier.citationAdvances in electrical and electronic engineering. 2023, vol. 21, no. 4, p. 295-304 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/152420
dc.description.abstractThis paper introduces a novel technique for predicting the stability of quadruped robot locomo- tion using a central pattern generator (CPG). The proposed method utilizes classification methods and principal component analysis (PCA) to predict sta- bility. The objective of this study is to anticipate the stability or instability of robot movement by mod- ifying controlling parameters, referred to as features. The simulations of robot locomotion are conducted in MATLAB/SIMULINK R©, generating a dataset of 82 observations with different parameters. Machine learn- ing (ML) techniques are then applied, using classi- fication methods and PCA, to determine the stabil- ity condition. Six classification methods, including K-nearest neighbors (KNN), support vector classifier (SVC), Gaussian Naïve Bayes (GaussianNB), logistic regression (LR), decision tree (DT), and random for- est (RF) are implemented using Scikit-learn, an open- source ML library in Python. The performance of these classifiers is evaluated using four metrics: precision, recall, accuracy, and F1-score. The results indicate that KNN and SVC exhibit higher metric values com- pared to the other classifiers, making them more effec- tive for stability prediction.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v21i4.5215cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectquadruped robotcs
dc.subjectstabilitycs
dc.subjectpredictioncs
dc.subjectclassification methodscs
dc.subjectprincipal component analysis (PCA)cs
dc.titleStability Prediction Of Quadruped Robot Movement Using Classification Methods And Principal Component Analysiscs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v21i4.5215
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava