Zobrazit minimální záznam

dc.contributor.authorHuynh, Bao
dc.contributor.authorTung, N. T.
dc.contributor.authorNguyen, Trinh D. D.
dc.contributor.authorTrinh, Cuong
dc.contributor.authorSnášel, Václav
dc.contributor.authorNguyen, Loan
dc.date.accessioned2024-06-25T08:21:15Z
dc.date.available2024-06-25T08:21:15Z
dc.date.issued2023
dc.identifier.citationApplied Intelligence. 2023, vol. 54, issue 1, p. 767-790.cs
dc.identifier.issn0924-669X
dc.identifier.issn1573-7497
dc.identifier.urihttp://hdl.handle.net/10084/152723
dc.description.abstractRecently, two research directions have been noticed in data mining: frequent itemset mining (FIM) and high utility itemset mining (HUIM). The FIM process will output itemsets whose number of occurrences together exceeds or equals the required threshold, but this process ignores the beneficial attribute of each item. HUIM algorithms are proposed to overcome the disadvantage of FIM, but these algorithms only use a single threshold, which is unsuitable in the real world when applications often require different utility thresholds. HUIM algorithms with multi-threshold utilities are proposed, but these have high mining time and memory consumption. This paper thus presents an efficient method for Mining High Utility Itemsets with Multiple Utility Thresholds (MHUI-MUT). The article applies upper bounds and the strategy of pruning, thus reducing database scanning, and proposes a cut-off threshold to minimize the mining time.We also present a method to parallelize the algorithm to make the most of the performance of multi-core computers. The experimental results show the superior speed of the MHUI-MUT algorithm compared to the previous one, and the parallel version also outperforms the proposed sequential algorithm.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesApplied Intelligencecs
dc.relation.urihttps://doi.org/10.1007/s10489-023-05145-8cs
dc.rightsCopyright © 2023, The Author(s), under exclusive licence to Springer Science Business Media, LLC, part of Springer Naturecs
dc.subjectdata miningcs
dc.subjecthigh utility itemset miningcs
dc.subjectmultiple utility thresholdscs
dc.subjectmultiple-core parallelcs
dc.subjectMHUI-MUT algorithmcs
dc.titleNew approaches for mining high utility itemsets with multiple utility thresholdscs
dc.typearticlecs
dc.identifier.doi10.1007/s10489-023-05145-8
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume54cs
dc.description.issue1cs
dc.description.lastpage790cs
dc.description.firstpage767cs
dc.identifier.wos001129258400002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam