Zobrazit minimální záznam

dc.contributor.authorBenzaoui, Khaled Mohammed Said
dc.contributor.authorBenyoussef, Elakhdar
dc.contributor.authorGuedida, Sifelislam
dc.contributor.authorTabbache, Bekheira
dc.contributor.authorKouache, Ahmed Zouhir
dc.date.accessioned2024-10-22T12:15:07Z
dc.date.available2024-10-22T12:15:07Z
dc.date.issued2024
dc.identifier.citationAdvances in electrical and electronic engineering. 2024, vol. 22, no. 3, p. 281-296 : ill.cs
dc.identifier.issn1336-1376
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/155196
dc.description.abstractThis paper deals with an independent control of two parallel-connected five-phase induction machines (FPIM) fed by NPC three-level inverter. In effect a direct torque control (DTC) of two parallelconnected FPIMs has been developed to ensure a simple and fast decoupled control over the stator flux and electromagnetic torque and high performance in event of machine parameters disturbances. However, DTC suffer from the torque and flux ripples due the hysteresis controllers. In this context, an intelligent DTC based on Artificial Neural Network (ANN) has been proposed to minimize the stator flux and electromagnetic torque ripples in a steady and transient states and therefore reduction of the stator current harmonic THD. hence, Intelligent ANN hysteresis controllers and switching table of the DTC have been incorporated to select the optimum voltage vector of the NPC-VSI to be applied in the control of two parallel-connected FPIM. Moreover, a virtual current sensor (VCS) approach is proposed to configure a fault-tolerant control scheme (FTC). The effectiveness of the proposed (DTC-ANN) and the FTC have been checked by an intensive simulation in different operating conditions.cs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttps://doi.org/10.15598/aeee.v22i3.5738cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsAttribution-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjecttwo-machine parallel connected drivecs
dc.subjectdirect torque control (DTC)cs
dc.subjectfive-phase induction machine (FPIM)cs
dc.subjectartificial neural network (ANN)cs
dc.subjectfault-tolerant control (FTC)cs
dc.subjectvirtual current sensor (VCS)cs
dc.titleSensorless DTC Based on Artificial Neural Network for Independent Control of Dual 5-Phase Induction Machine Fed by a Three-Level NPC Invertercs
dc.typearticlecs
dc.identifier.doi10.15598/aeee.v22i3.5738
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Vysoká škola báňská - Technická univerzita Ostrava
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Vysoká škola báňská - Technická univerzita Ostrava