Show simple item record

dc.contributor.authorGála, Michal
dc.contributor.authorMohylová, Jitka
dc.contributor.authorKrajča, Vladimír
dc.date.accessioned2011-02-09T14:37:11Z
dc.date.available2011-02-09T14:37:11Z
dc.date.issued2008
dc.identifier.citationAdvances in electrical and electronic engineering. 2008, vol. 7, no. 1, 2, p. 346-349.en
dc.identifier.issn1336-1376
dc.identifier.urihttp://hdl.handle.net/10084/84206
dc.description.abstractAnalysis of long-term EEG requires that it is segmented into piece-wise stationary sections and classified. Neural network architecture is introduced for the problem of classification of EEG signals. This paper deals with basic signal classification into two classes. This work is a ground towards creating an algorithm to sleep status analysis. Signal is first worked by signal segmentation and then is used a neural network to classification into two class.en
dc.format.extent299087 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoenen
dc.publisherŽilinská univerzita v Žiline. Elektrotechnická fakultaen
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringen
dc.relation.urihttp://advances.utc.sk/index.php/AEEEen
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.rights© Žilinská univerzita v Žiline. Elektrotechnická fakulta
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.titleApplication of neutral network by EEG signal classificationen
dc.typearticleen
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Files in this item

This item appears in the following Collection(s)

  • AEEE. 2008, vol. 7 [106]
  • OpenAIRE [5085]
    Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).

Show simple item record

Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported (CC BY 3.0)