Zobrazit minimální záznam

dc.contributor.authorKotas, Petr
dc.contributor.authorPraks, Pavel
dc.contributor.authorVálek, Ladislav
dc.contributor.authorZejkovic, Vesna
dc.contributor.authorVondrák, Vít
dc.date.accessioned2012-05-25T07:29:03Z
dc.date.available2012-05-25T07:29:03Z
dc.date.issued2012
dc.identifier.citationAdvances in electrical and electronic engineering. 2012, vol. 10, no. 1, p. 50-56.cs
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/90476
dc.description.abstractThe aim of the research is the development and testing of new methods to classify the quality of metallographic samples of steels with high added value, for example, grades X70 according API. In this paper, we address the development of methods to classify the quality of slab samples images with the main emphasis on the quality of the image center called as a segregation area. For this reason, we introduce an alternative method for automated retrieval of the region of interest. In the first step, the metallographic image is segmented using both spectral method and thresholding. Then, the extracted macrostructure of the metallographic image is automatically analyzed by statistical methods. Finally, the automatically extracted region of interest is compared with the results of human experts. A practical experience with retrieval of non-homogeneous noised digital images in an industrial environment is discussed as well.cs
dc.format.extent4069404 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://advances.utc.sk/index.php/AEEE/article/download/564/760cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.subjecthuman factorscs
dc.subjectimage classificationcs
dc.subjectimage segmentationcs
dc.subjectinformation retrievalcs
dc.subjectquality controlcs
dc.subjectslab qualitycs
dc.titleAutomated region of interest retrieval of metallographic images for quality classification in industrycs
dc.typearticlecs
dc.rights.accessopenAccess
dc.type.versionpublishedVersion
dc.type.statusPeer-reviewed


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

  • OpenAIRE [5085]
    Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).
  • AEEE. 2012, vol. 10 [57]

Zobrazit minimální záznam