Zobrazit minimální záznam

dc.contributor.authorViszlay, Peter
dc.contributor.authorJanečko, Jozef
dc.contributor.authorJuhár, Jozef
dc.date.accessioned2012-12-06T10:55:22Z
dc.date.available2012-12-06T10:55:22Z
dc.date.issued2012
dc.identifier.citationAdvances in electrical and electronic engineering. 2012, vol. 10, no. 4, p. 303-307.cs
dc.identifier.issn1804-3119
dc.identifier.urihttp://hdl.handle.net/10084/95815
dc.description.abstractThis article presents a specific approach for selecting a limited set of most relevant, information rich speech data from the whole amount of training data. The proposed method uses Principal Component Analysis (PCA) to optimally select a lower-dimensional data subset with similar variances. In this paper, three selection algorithms, based on eigenvalue criterion are presented. The first one operates and analyzes the data at the entire speech-recording level. The second one additionally segments each of the recordings into experimentally sized blocks, which theoretically divides a record level into several smaller information richer/poorer blocks. Finally, the third one analyzes all the speech records at the feature vector level. These three approaches represent three different criterion-based selection techniques from the coarsest to the finest data level. The main aim of the presented experiments is to show that PCA trained with the limited subset of data achieves comparable or even better results than PCA trained with the entire speech corpus. In fact, this approach can radically speed up the learning of PCA with much smaller memory and computational costs. All methods are evaluated in Slovak phoneme-based large vocabulary continuous speech recognition task.cs
dc.format.extent493765 bytescs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.relation.ispartofseriesAdvances in electrical and electronic engineeringcs
dc.relation.urihttp://advances.utc.sk/index.php/AEEE/article/view/723/814cs
dc.rights© Vysoká škola báňská - Technická univerzita Ostrava
dc.rightsCreative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.subjectEigenvaluecs
dc.subjectfeature vectorcs
dc.subjectprincipal componentscs
dc.subjectselection criterioncs
dc.subjectvariancecs
dc.titleEigenvalue criterion-based feature selectionin principal component analysis of speechcs
dc.typearticlecs
dc.rights.accessopenAccess
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

  • AEEE. 2012, vol. 10 [57]
  • OpenAIRE [5085]
    Kolekce určená pro sklízení infrastrukturou OpenAIRE; obsahuje otevřeně přístupné publikace, případně další publikace, které jsou výsledkem projektů rámcových programů Evropské komise (7. RP, H2020, Horizon Europe).

Zobrazit minimální záznam