Hybrid optimization algorithm for handwritten document enhancement

dc.contributor.authorChu, Shu-Chuan
dc.contributor.authorYang, Xiaomeng
dc.contributor.authorZhang, Li
dc.contributor.authorSnášel, Václav
dc.contributor.authorPan, Jeng-Shyang
dc.date.accessioned2025-01-21T13:11:48Z
dc.date.available2025-01-21T13:11:48Z
dc.date.issued2024
dc.description.abstractThe Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.cs
dc.description.firstpage3763cs
dc.description.issue3cs
dc.description.lastpage3786cs
dc.description.sourceWeb of Sciencecs
dc.description.volume78cs
dc.identifier.citationComputers, Materials & Continua. 2024, vol. 78, issue 3, p. 3763-3786.cs
dc.identifier.doi10.32604/cmc.2024.048594
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.urihttp://hdl.handle.net/10084/155694
dc.identifier.wos001205553800029
dc.language.isoencs
dc.publisherTech Science Presscs
dc.relation.ispartofseriesComputers, Materials & Continuacs
dc.relation.urihttps://doi.org/10.32604/cmc.2024.048594cs
dc.rightsCopyright © 2024 The Author(s). Published by Tech Science Press.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmetaheuristic algorithmcs
dc.subjectgannet optimization algorithmcs
dc.subjecthybrid algorithmcs
dc.subjecthandwritten document enhancementcs
dc.titleHybrid optimization algorithm for handwritten document enhancementcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1546-2218-2024v78i3p3763.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: