Correlations between Achilles tendon material and structural properties and quantitative magnetic resonance imagining in different athletic populations
| dc.contributor.author | Monte, Andrea | |
| dc.contributor.author | Skýpala, Jiří | |
| dc.contributor.author | Vilímek, Dominik | |
| dc.contributor.author | Juráš, Vladimír | |
| dc.contributor.author | Jandačka, Daniel | |
| dc.date.accessioned | 2024-04-18T08:08:02Z | |
| dc.date.available | 2024-04-18T08:08:02Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Achilles tendon stiffness (kAT) and Young's modulus (yAT) are important determinants of tendon function. However, their evaluation requires sophisticated equipment and time-consuming procedures. The goal of this study was twofold: to compare kAT and yAT between populations using the classical approach proposed in the literature (a combination of ultrasound and force data) and the MRI technique to understand the MRI's capability in determining differences in kAT and yAT. Furthermore, we investigated potential correlations between short and long T2* relaxation time, kAT and yAT to determine whether T2* relaxation time may be associated with material or structural properties. Twelve endurance and power athlete, and twelve healthy controls were recruited. AT T2* short and long components were measured using standard gradient echo MRI at rest, while kAT and yAT were evaluated using the classical method (combination of ultrasound and dynamometric measure-ments). Power athletes had the highest kAT (3064 +/- 260, 2714 +/- 260 and 2238 +/- 189 N/mm for power ath-letes, endurance athletes and healthy control, respectively) and yAT (2.39 +/- 0.28, 1.64 +/- 0.22 and 1.97 +/- 0.32 GPa for power athletes, endurance athletes and healthy control, respectively) and the lowest T2* short component (0.58 +/- 0.07, 0.77 +/- 0.06 and 0.74 +/- 0.08 ms for power athletes, endurance athletes and healthy control, respectively). Endurance athletes had the highest T2* long component value. No correlations were re-ported between T2* long component, kAT or yAT in the investigated populations, whereas the T2* short component was negatively correlated with yAT. These results suggest that T2* short component could be used to investigate the differences in AT material properties in different populations. | cs |
| dc.description.firstpage | art. no. 111796 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 159 | cs |
| dc.identifier.citation | Journal of Biomechanics. 2023, vol. 159, art. no. 111796. | cs |
| dc.identifier.doi | 10.1016/j.jbiomech.2023.111796 | |
| dc.identifier.issn | 0021-9290 | |
| dc.identifier.issn | 1873-2380 | |
| dc.identifier.uri | http://hdl.handle.net/10084/152531 | |
| dc.identifier.wos | 001080636600001 | |
| dc.language.iso | en | cs |
| dc.publisher | Elsevier | cs |
| dc.relation.ispartofseries | Journal of Biomechanics | cs |
| dc.relation.uri | https://doi.org/10.1016/j.jbiomech.2023.111796 | cs |
| dc.rights | © 2023 The Author(s). Published by Elsevier Ltd. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | MRI | cs |
| dc.subject | stiffness | cs |
| dc.subject | Young’s modulus | cs |
| dc.subject | tendon mechanics | cs |
| dc.subject | evaluation | cs |
| dc.title | Correlations between Achilles tendon material and structural properties and quantitative magnetic resonance imagining in different athletic populations | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 0021-9290-2023v159an111796.pdf
- Size:
- 1.89 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals