Efficient detection of spam over internet telephony by machine learning algorithms
| dc.contributor.author | Beháň, Ladislav | |
| dc.contributor.author | Rozhon, Jan | |
| dc.contributor.author | Šafařík, Jakub | |
| dc.contributor.author | Řezáč, Filip | |
| dc.contributor.author | Vozňák, Miroslav | |
| dc.date.accessioned | 2023-02-23T13:54:35Z | |
| dc.date.available | 2023-02-23T13:54:35Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Recent trends show a growing interest in VoIP services and indicate that guaranteeing security in VoIP services and preventing hacker communities from attacking telecommunication solutions is a challenging task. Spam over Internet Telephony (SPIT) is a type of attack which is a significant detriment to the user's experience. A number of techniques have been produced to detect SPIT calls. We reviewed these techniques and have proposed a new approach for quick, efficient and highly accurate detection of SPIT calls using neural networks and novel call parameters. The performance of this system was compared to other state-of-art machine learning algorithms on a real-world dataset, which has been published online and is publicly available. The results of the study demonstrated that new parameters may help improve the effectiveness and accuracy of applied machine learning algorithms. The study explored the entire process of designing a SPIT detection algorithm, including data collection and processing, defining suitable parameters, and final evaluation of machine learning models. | cs |
| dc.description.firstpage | 133412 | cs |
| dc.description.lastpage | 133426 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 10 | cs |
| dc.identifier.citation | IEEE Access. 2022, vol. 10, p. 133412-133426. | cs |
| dc.identifier.doi | 10.1109/ACCESS.2022.3231384 | |
| dc.identifier.issn | 2169-3536 | |
| dc.identifier.uri | http://hdl.handle.net/10084/149143 | |
| dc.identifier.wos | 000906230200001 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartofseries | IEEE Access | cs |
| dc.relation.uri | https://doi.org/10.1109/ACCESS.2022.3231384 | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | data mining | cs |
| dc.subject | machine learning | cs |
| dc.subject | neural network | cs |
| dc.subject | SIP | cs |
| dc.subject | spam | cs |
| dc.subject | SPIT | cs |
| dc.subject | VoIP | cs |
| dc.title | Efficient detection of spam over internet telephony by machine learning algorithms | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry telekomunikačních technologií / Publications of Department of Telecommunications (440)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals