A neural-visualization IDS for honeynet data
Loading...
Downloads
6
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
World Scientific Publishing
Location
Není ve fondu ÚK
Signature
Abstract
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.
Description
Subject(s)
artificial neural networks, unsupervised learning, projection models, network & computer security, intrusion detection, honeypots
Citation
International Journal of Neural Systems. 2012, vol. 22, issue 2, article no. 1250005.