Effect of deposition temperature on the tribo-mechanical properties of nitrogen doped DLC thin film

Loading...
Thumbnail Image

Downloads

4

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

Frontiers Media S.A.

Location

Signature

License

Abstract

The tribomechanical characteristics of diamond-like carbon (DLC) coatings are notably superior to other hard coatings, making them highly desirable for industrial applications. This study focuses on the synthesis of nitrogen-doped DLC (N-DLC) films through chemical vapor deposition (CVD) methods, with an emphasis on varying the deposition temperature. Comprehensive characterization techniques such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and nanoindentation were employed to investigate the morphological and mechanical attributes of these coatings. The thickness of the films, measured using a Dektak profilometer, demonstrated an increase from 1.9 to 2.8 mu m as the deposition temperature rose. Nanoindentation testing revealed that the film deposited at 900 degrees C exhibited the highest hardness (H) and modulus of elasticity (E), measuring 21.95 and 208.3 GPa, respectively. Conversely, the film deposited at 1,000 degrees C showed the lowest values, with H and E at 14.23a and 141.9 GPa, respectively. The H/E ratio of the coatings initially rose from 0.096 to 0.106 as the deposition temperature increased from 800 degrees C to 900 degrees C. However, for deposition temperatures exceeding 900 degrees C the H/E ratio began to decline.

Description

Subject(s)

nitrogen-doped diamond-like carbon, tribomechanical properties, chemical vapor deposition, nanoindentation, deposition temperature

Citation

Frontiers in Mechanical Engineering. 2024, vol. 10, art. no. 1365555.