Tailoring the Li+ intercalation energy of carbon nanocage anodes via atomic Al-doping for high-performance lithium-ion batteries

dc.contributor.authorYu, Xingmiao
dc.contributor.authorXiang, Jianfei
dc.contributor.authorShi, Qitao
dc.contributor.authorLi, Luwen
dc.contributor.authorWang, Jiaqi
dc.contributor.authorLiu, Xiangqi
dc.contributor.authorZhang, Cheng
dc.contributor.authorWang, Zhipeng
dc.contributor.authorZhang, Junjin
dc.contributor.authorHu, Huimin
dc.contributor.authorBachmatiuk, Alicja
dc.contributor.authorTrzebicka, Barbara
dc.contributor.authorChen, Jin
dc.contributor.authorGuo, Tianxiao
dc.contributor.authorShen, Yanbin
dc.contributor.authorChoi, Jinho
dc.contributor.authorHuang, Cheng
dc.contributor.authorRümmeli, Mark H.
dc.date.accessioned2024-11-19T08:21:52Z
dc.date.available2024-11-19T08:21:52Z
dc.date.issued2024
dc.description.abstractGraphitic carbon materials are widely used in lithium-ion batteries (LIBs) due to their stability and high conductivity. However, graphite anodes have low specific capacity and degrade over time, limiting their application. To meet advanced energy storage needs, high-performance graphitic carbon materials are required. Enhancing the electrochemical performance of carbon materials can be achieved through boron and nitrogen doping and incorporating 3D structures such as carbon nanocages (CNCs). In this study, aluminum (Al) is introduced into CNC lattices via chemical vapor deposition (CVD). The hollow structure of CNCs enables fast electrolyte penetration. Density functional theory (DFT) calculations show that Al doping lowers the intercalation energy of Li+. The Al-boron (B)-nitrogen (N-doped CNC (AlBN-CNC) anode demonstrates an ultrahigh rate capacity (approximate to 300 mAh g(-1) at 10 A g(-1)) and a prolonged fast-charging lifespan (862.82 mAh g(-1) at 5 A g(-1) after 1000 cycles), surpassing the N-doped or BN-doped CNCs. Al doping improves charging kinetics and structural stability. Surprisingly, AlBN-CNCs exhibit increased capacity upon cycling due to enlarged graphitic interlayer spacing. Characterization of graphitic nanostructures confirms that Al doping effectively tailors and enhances their electrochemical properties, providing a new strategy for high-capacity, fast-charging graphitic carbon anode materials for next-generation LIBs.cs
dc.description.sourceWeb of Sciencecs
dc.identifier.citationSmall. 2024.cs
dc.identifier.doi10.1002/smll.202406309
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/10084/155316
dc.identifier.wos001326958200001
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesSmallcs
dc.relation.urihttps://doi.org/10.1002/smll.202406309cs
dc.rights© 2024 The Author(s). Small published by Wiley-VCH GmbHcs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectanodecs
dc.subjectatomic Al-dopingcs
dc.subjectcarbon nanocagecs
dc.subjectfast-chargingcs
dc.titleTailoring the Li+ intercalation energy of carbon nanocage anodes via atomic Al-doping for high-performance lithium-ion batteriescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1613-6810-2024.pdf
Size:
7.87 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: