On a bicomplex induced by the variational sequence

dc.contributor.authorKrupka, Demeter
dc.contributor.authorMoreno, Giovanni
dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2016-10-06T08:40:22Z
dc.date.available2016-10-06T08:40:22Z
dc.date.issued2015
dc.description.abstractThe construction of a finite-order bicomplex whose morphisms are the horizontal and vertical derivatives of differential forms on finite-order jet prolongations of fibered manifolds over one-dimensional bases is presented. In particular, relationship between the morphisms and classes entering the variational sequence and the associated finite-order bicomplex is studied. Properties of classes entering the infinite-order bicomplex, induced from the finite-order variational sequences by means of an infinite canonical construction, are formulated as a remark, insisting further research.en
dc.description.firstpageart. no. 1550057en
dc.description.issue5
dc.description.sourceWeb of Science
dc.description.volume12
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2015, vol. 12, issue 5, art. no. 1550057.en
dc.identifier.doi10.1142/S0219887815500577
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.urihttp://hdl.handle.net/10084/112130
dc.identifier.wos000355323900006
dc.language.isoen
dc.publisherWorld Scientific Publishing
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physics
dc.relation.urihttp://dx.doi.org/10.1142/S0219887815500577
dc.rightsAll material published by World Scientific Publishing and Imperial College Press is protected under International copyright and intellectual property laws.en
dc.subjectvariational sequenceen
dc.subjectvariational bicomplexen
dc.subjectLagrangianen
dc.subjectEuler–Lagrange expressionsen
dc.subjectHelmholtz expressionsen
dc.titleOn a bicomplex induced by the variational sequenceen
dc.typearticleen
dc.type.statusPeer-revieweden

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: