Choosing a method for predicting economic performance of companies
| dc.contributor.author | Dvořáček, Jaroslav | |
| dc.contributor.author | Sousedíková, Radmila | |
| dc.contributor.author | Řepka, Michal | |
| dc.contributor.author | Domaracká, Lucia | |
| dc.contributor.author | Barták, Pavel | |
| dc.contributor.author | Bartošíková, Michaela | |
| dc.date.accessioned | 2012-07-31T07:52:45Z | |
| dc.date.available | 2012-07-31T07:52:45Z | |
| dc.date.issued | 2012 | |
| dc.description.abstract | This paper reports on the eff orts to fi nd a method for predicting economic results of companies. The input data fi les consist of 93 profi table companies and 93 bankrupt fi rms. From the total number of 93 fi rms in both categories, data of 72 fi rms served for establishing a classifi cation criterion, and for the rest of 21 fi rms, a prognosis of their economic development was performed. The classifi cation criterion for prognosticating the future economic development has been established by applications of discriminate analysis, logit analysis, and artifi cial neural network methods. The application of artifi cial neural networks has provided for better classifi cation accuracies of 90,48 % for successful fi rms, and 100 % for bankrupt fi rms. | cs |
| dc.description.abstract-en | U ovom se članku opisuju pokušaji pronalaska učinkovite metode za predviđanje ekonomskog rezultata tvrtki. Datoteke ulaznih podataka sastoje se od 93 uspješne tvrtke i 93 tvrtke koje su bankrotirale. Od ukupnog broja od 93 tvrtke u obje kategorije datoteka s ulaznim podacima, podaci za 72 tvrtke poslužili su za određivanje klasifi kacijskog kriterija a za preostalu 21 tvrtku provela se prognoza njihovog ekonomskog razvoja. Klasifi kacijski kriterij za predviđanje budućeg ekonomskog razvoja tvrtke uspostavljen je primjenom analize diskriminacije, logičkom regresijom i metodama umjetne neuronske mreže. Primjena logičke regresije i umjetnih neuronskih mreža omogućila je bolju klasifi kacijsku točnost u slučaju 90,48 % uspješnih tvrtki i 100 % tvrtki koje su bankrotirale. | cs |
| dc.description.firstpage | 525 | cs |
| dc.description.issue | 4 | cs |
| dc.description.lastpage | 528 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 51 | cs |
| dc.format.extent | 958112 bytes | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Metalurgija. 2012, g. 51, br. 4, s. 525-528. | cs |
| dc.identifier.issn | 0543-5846 | |
| dc.identifier.issn | 1334-2576 | |
| dc.identifier.location | Není ve fondu ÚK | cs |
| dc.identifier.uri | http://hdl.handle.net/10084/94932 | |
| dc.identifier.uri | ||
| dc.identifier.wos | 000305205800023 | |
| dc.language.iso | en | cs |
| dc.publisher | Hrvatsko Metalurško Društvo | cs |
| dc.relation.ispartofseries | Metalurgija | cs |
| dc.relation.uri | http://hrcak.srce.hr/file/123401 | cs |
| dc.rights.access | openAccess | |
| dc.subject | prediction | cs |
| dc.subject | discriminant analysis | cs |
| dc.subject | Logit analysis | cs |
| dc.subject | artificial neural networks | cs |
| dc.subject | classification accuracies | cs |
| dc.subject | predvidljivost | cs |
| dc.subject | analiza razlika | cs |
| dc.subject | analize logičke regresije (Logit analize) | cs |
| dc.subject | umjetne neuronske mreže | cs |
| dc.subject | klasifkacija točnosti | cs |
| dc.title | Choosing a method for predicting economic performance of companies | cs |
| dc.title.alternative | Izbor metode za predviđanje ekonomskih rezultata tvrtki | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- MET_51_4_525_528_Dvoracek.pdf
- Size:
- 935.66 KB
- Format:
- Adobe Portable Document Format
- Description:
- publishedVersion
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: