Active set expansion strategies in MPRGP algorithm

dc.contributor.authorKružík, Jakub
dc.contributor.authorHorák, David
dc.contributor.authorČermák, Martin
dc.contributor.authorPospíšil, Lukáš
dc.contributor.authorPecha, Marek
dc.date.accessioned2020-11-10T10:36:35Z
dc.date.available2020-11-10T10:36:35Z
dc.date.issued2020
dc.description.abstractThe paper investigates strategies for expansion of active set that can be employed by the MPRGP algorithm. The standard MPRGP expansion uses a projected line search in the free gradient direction with a fixed step length. Such a scheme is often too slow to identify the active set, requiring a large number of expansions. We propose to use adaptive step lengths based on the current gradient, which guarantees the decrease of the unconstrained cost function with different gradient-based search directions. Moreover, we also propose expanding the active set by projecting the optimal step for the unconstrained minimization. Numerical experiments demonstrate the benefits (up to 78% decrease in the number of Hessian multiplications) of our expansion step modifications on two benchmarks - contact problem of linear elasticity solved by TFETI and machine learning problems of SVM type, both implemented in PERMON toolbox.cs
dc.description.firstpageart. no. 102895cs
dc.description.sourceWeb of Sciencecs
dc.description.volume149cs
dc.identifier.citationAdvances in Engineering Software. 2020, vol. 149, art. no. 102895.cs
dc.identifier.doi10.1016/j.advengsoft.2020.102895
dc.identifier.issn0965-9978
dc.identifier.issn1873-5339
dc.identifier.urihttp://hdl.handle.net/10084/142401
dc.identifier.wos000577084300005
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesAdvances in Engineering Softwarecs
dc.relation.urihttp://doi.org/10.1016/j.advengsoft.2020.102895cs
dc.rights© 2020 Elsevier Ltd. All rights reserved.cs
dc.subjectMPRGPcs
dc.subjectactive setcs
dc.subjectexpansion stepcs
dc.subjectquadratic programmingcs
dc.subjectPERMONcs
dc.titleActive set expansion strategies in MPRGP algorithmcs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: