Ammonia and toluene oxidation: Mutual activating effect of copper and cerium on catalytic efficiency

Loading...
Thumbnail Image

Downloads

0

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Location

Signature

Abstract

Copper and cerium containing hydrotalcite-like precursors Cux-Cey-Mg-Al were synthesized by mutual coprecipitation followed by calcination at 800 degrees C. The obtained mixed metal oxides were studied as catalysts for selective ammonia oxidation (NH 3 -SCO) and toluene combustion. Various techniques, such as temperatureprogrammed reduction with hydrogen, temperature -programmed desorption of toluene, scanning electron microscopy and reactive frontal chromatography were used to characterize the catalysts. Series 800-Cux-Ce2.5 showed the highest catalytic efficiency in both reactions, allowing complete NH 3 and C 7 H 8 conversion below 350 degrees C and 500 degrees C, respectively. CeO 2 crystallites (12-18 nm), as well as dispersed CuO oxide forms were found in the most active samples. Both phases affect pollutants conversion, however, for ammonia oxidation the occurrence of Cu 2+ is essential, while for toluene oxidation, the formation of Ce 4+ is sufficient. Over the most active sample (800-Cu5-Ce2.5) the complete conversion in mutual oxidation of NH 3 and toluene was achieved below 450 degrees C.

Description

Subject(s)

mixed metal oxides, ammonia oxidation, total oxidation of volatile organic compounds, cerium, copper

Citation

Applied Surface Science. 2024, vol. 663, art. no. 160204.