The fundamental Lepage form in variational theory for submanifolds

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorBrajerčík, Ján
dc.date.accessioned2018-05-30T11:56:15Z
dc.date.available2018-05-30T11:56:15Z
dc.date.issued2018
dc.description.abstractThe multiple-integral variational functionals for finite-dimensional immersed submanifolds are studied by means of the fundamental Lepage equivalent of a homogeneous Lagrangian, which can be regarded as a generalization of the well-known Hilbert form in the classical mechanics. The notion of a Lepage form is extended to manifolds of regular velocities and plays a basic role in formulation of the variational theory for submanifolds. The theory is illustrated on the minimal submanifolds problem, including analysis of conservation law equations.cs
dc.description.firstpageart. no. 1850103cs
dc.description.issue6cs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2018, vol. 15, issue 6, art. no. 1850103.cs
dc.identifier.doi10.1142/S0219887818501037
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.urihttp://hdl.handle.net/10084/127216
dc.identifier.wos000432458300016
dc.language.isoencs
dc.publisherWorld Scientific Publishingcs
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physicscs
dc.relation.urihttps://doi.org/10.1142/S0219887818501037cs
dc.subjectLagrangiancs
dc.subjectEuler-Lagrange formcs
dc.subjectLepage equivalentcs
dc.subjectGrassmann fibrationcs
dc.subjectZermelo conditionscs
dc.subjectminimal surface functionalcs
dc.subjectNoether currentcs
dc.titleThe fundamental Lepage form in variational theory for submanifoldscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: