Optimized deep learning - Inspired model for the diagnosis and prediction of COVID-19

Loading...
Thumbnail Image

Downloads

4

Date issued

Journal Title

Journal ISSN

Volume Title

Publisher

Tech Science Press

Location

Signature

License

Abstract

Detecting COVID-19 cases as early as possible became a critical issue that must be addressed to avoid the pandemic's additional spread and early provide the appropriate treatment to the affected patients. This study aimed to develop a COVID-19 diagnosis and prediction (AIMDP) model that could identify patients with COVID-19 and distinguish it from other viral pneumonia signs detected in chest computed tomography (CT) scans. The proposed system uses convolutional neural networks (CNNs) as a deep learning technology to process hundreds of CT chest scan images and speeds up COVID-19 case prediction to facilitate its containment. We employed the whale optimization algorithm (WOA) to select the most relevant patient signs. A set of experiments validated AIMDP performance. It demonstrated the superiority of AIMDP in terms of the area under the curve-receiver operating characteristic (AUC-ROC) curve, positive predictive value (PPV), negative predictive rate (NPR) and negative predictive value (NPV). AIMDP was applied to a dataset of hundreds of real data and CT images, and it was found to achieve 96% AUC for diagnosing COVID-19 and 98% for overall accuracy. The results showed the promising performance of AIMDP for diagnosing COVID-19 when compared to other recent diagnosing and predicting models.

Description

Subject(s)

convolutional neural networks, coronavirus disease 2019 (COVID-19), CT chest scan imaging, deep learning technique, feature selection, whale optimization algorithm

Citation

Computers, Materials & Continua. 2021, vol. 67, issue 2, s. 2353-2371.