Using imperialist competition algorithm for independent task scheduling in grid computing
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
IOS Press
Location
Signature
Abstract
A grid computing environment provides a type of distributed computation that is unique because it is not centrally managed and it has the capability to connect heterogeneous resources. A grid system provides location-independent access to the resources and services of geographically distributed machines. An essential ingredient for supporting location-independent computations is the ability to discover resources that have been requested by the users. Because the number of grid users can increase and the grid environment is continuously changing, a scheduler that can discover decentralized resources is needed. Grid resource scheduling is considered to be a complicated, NP-hard problem because of the distribution of resources, the changing conditions of resources, and the unreliability of infrastructure communication. Various artificial intelligence algorithms have been proposed for scheduling tasks in a computational grid. This paper uses the imperialist competition algorithm (ICA) to address the problem of independent task scheduling in a grid environment, with the aim of reducing the makespan. Experimental results compare ICA with other algorithms and illustrate that ICA finds a shorter makespan relative to the others. Moreover, it converges quickly, finding its optimum solution in less time than the other algorithms.
Description
Subject(s)
Citation
Journal of Intelligent & Fuzzy Systems. 2014, vol. 27, no. 1, p. 187-199.