One-step synthesis of a sustainable carbon material for high performance supercapacitor and dye adsorption applications
Loading...
Downloads
11
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
License
Abstract
The sustainable transformation of bio-waste into usable, material has gained great scientific interest. In this paper, we have presented preparation of an activated carbon material from a natural mushroom (Suillus boletus) and explor its properties for supercapacitor and dye adsorption applications. The produced cell exhibited a single electrode capacitance of-247 F g-1 with the energy and power density of-35 Wh kg-1 and 1.3 kW kg-1, respectively. The cell worked well for-20,000 cycles with-30% initial declination in capacitance. Three cells connected in series glowed a 2.0 V LED for-1.5 min. Moreover, ultrafast adsorption of methylene blue dye onto the prepared carbon as an adsorbent was recorded with-100% removal efficiency in an equilibrium time of three minutes. The performed tests indicate that the mushroom-derived activated carbon has the potential to become a high-performance electrode material for supercapacitors and an adsorbent for real-time wastewater treatment applications.
Description
Subject(s)
activated carbon, amorphous material, biomass, polymer gel electrolyte, supercapacitor, dye adsorption
Citation
Materials Science and Engineering: B. 2023, vol. 297, art. no. 116766.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals