Adaptive ascent control of a collaborative object transportation system using two quadrotors

dc.contributor.authorPokorný, Miroslav
dc.contributor.authorNowaková, Jana
dc.contributor.authorDočekal, Tomáš
dc.date.accessioned2022-06-28T07:45:07Z
dc.date.available2022-06-28T07:45:07Z
dc.date.issued2022
dc.description.abstractThe paper focuses on the issue of collaborative control of a two quadrotor (Unmanned Aerial Vehicle QDR) system. In particular, two quadrotors perform the task of horizontally transporting a long payload along a predefined trajectory. A leader-follower method is used to synchronize the motion of both QDRs. Conventional PD controllers drive the motion of the leader QDR-L to follow a predefined trajectory. To control a follower QDR-F drive, in the case of indoor applications, a Position Feedback Controller approach (PFC) can be used. To control the QDR-F, the PFC system uses the position information of QDR-L and the required accurate tracking cameras. In our solution, outdoor applications are considered, and usage of the Global Positioning System (GPS) is needed. However, GPS errors can adversely affect the system's stability. The Force Feedback Controller approach (FFC) is therefore implemented to control the QDR-F motion. The FFC system assumes a rigid gripping of payload by both QDRs. The QDR-F collaborative motion is controlled using the feedback contact forces and torques acting on it due to the motion of the QDR-L. For FFC implementation, the principle of admittance control is used. The admittance controller simulates a virtual "mass-spring-damper" system and drives the motion of the QDR-F according to the contact forces. With the FFC control scheme, the follower QDR-F can be controlled without using the QDR-L positional feedback and the GPS. The contribution to the quality of payload transportation is the novelty of the article. In practice, one of the requirements may be to maintain the horizontal position of the payload. In this paper, an original solution is presented to minimize the horizontal position difference of both QDRs. A new procedure of the transfer admittance controller adaptation according to the mass of the transported payload is designed. The adaptive admittance FFC system is implemented in a Matlab-Simulink environment. The effectiveness of its trajectory tracking and horizontal stabilization functions for variations of the payload mass are demonstrated by numerical calculations.cs
dc.description.firstpageart. no. 2923cs
dc.description.issue8cs
dc.description.sourceWeb of Sciencecs
dc.description.volume22cs
dc.identifier.citationSensors. 2022, vol. 22, issue 8, art. no. 2923.cs
dc.identifier.doi10.3390/s22082923
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/146323
dc.identifier.wos000787439800001
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s22082923cs
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectunmanned aerial vehiclescs
dc.subjectcollaborative transportationcs
dc.subjectadmittance force feedback controlcs
dc.subjectadaptationcs
dc.titleAdaptive ascent control of a collaborative object transportation system using two quadrotorscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1424-8220-2022v22i8an2923.pdf
Size:
4.02 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: