Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems

dc.contributor.authorČermák, Martin
dc.contributor.authorSysala, Stanislav
dc.contributor.authorValdman, Jan
dc.date.accessioned2019-05-10T11:26:18Z
dc.date.available2019-05-10T11:26:18Z
dc.date.issued2019
dc.description.abstractFully vectorized MATLAB implementation of various elastoplastic problems formulated in terms of displacement is considered. It is based on implicit time discretization, the finite element method and the semismooth Newton method. Each Newton iteration represents a linear system of equations with a tangent stiffness matrix. We propose a decomposition of this matrix consisting of three large sparse matrices representing the elastic stiffness operator, the strain-displacement operator, and the derivative of the stress-strain operator. The first two matrices are fixed and assembled once and only the third matrix needs to be updated in each iteration. Assembly times of the tangent stiffness matrices are linearly proportional to the number of plastic integration points in practical computations and never exceed the assembly time of the elastic stiffness matrix. MATLAB codes are available for download and provide complete finite element implementations in both 2D and 3D assuming von Mises and Drucker-Prager yield criteria. One can also choose several finite elements and numerical quadrature rules.cs
dc.description.firstpage595cs
dc.description.lastpage614cs
dc.description.sourceWeb of Sciencecs
dc.description.volume355cs
dc.identifier.citationApplied Mathematics and Computation. 2019, vol. 355, p. 595-614.cs
dc.identifier.doi10.1016/j.amc.2019.02.054
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.urihttp://hdl.handle.net/10084/134869
dc.identifier.wos000464930500044
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Mathematics and Computationcs
dc.relation.urihttps://doi.org/10.1016/j.amc.2019.02.054cs
dc.rights© 2019 Elsevier Inc. All rights reserved.cs
dc.subjectMATLAB code vectorizationcs
dc.subjectelastoplasticitycs
dc.subjectfinite element methodcs
dc.subjecttangential stiffness matrixcs
dc.subjectsemismooth Newton methodcs
dc.titleEfficient and flexible MATLAB implementation of 2D and 3D elastoplastic problemscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: