On a global Lagrangian construction for ordinary variational equations on 2-manifolds

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2019-11-22T08:17:55Z
dc.date.available2019-11-22T08:17:55Z
dc.date.issued2019
dc.description.abstractLocally variational systems of differential equations on smooth manifolds, having certain de Rham cohomology group trivial, automatically possess a global Lagrangian. This important result due to Takens is, however, of sheaf-theoretic nature. A new constructive method of finding a global Lagrangian for second-order ODEs on 2-manifolds is described on the basis of the solvability of the exactness equation for the Lepage 2-forms and the top-cohomology theorems. Examples from geometry and mechanics are discussed.cs
dc.description.firstpageart. no. 092902cs
dc.description.issue9cs
dc.description.sourceWeb of Sciencecs
dc.description.volume60cs
dc.identifier.citationJournal of Mathematical Physics. 2019, vol. 60, issue 9, art. no. 092902.cs
dc.identifier.doi10.1063/1.5100351
dc.identifier.issn0022-2488
dc.identifier.issn1089-7658
dc.identifier.urihttp://hdl.handle.net/10084/138966
dc.identifier.wos000488816700027
dc.language.isoencs
dc.publisherAmerican Institute of Physicscs
dc.relation.ispartofseriesJournal of Mathematical Physicscs
dc.relation.urihttps://doi.org/10.1063/1.5100351cs
dc.rightsPublished under license by AIP Publishing.cs
dc.titleOn a global Lagrangian construction for ordinary variational equations on 2-manifoldscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: