Wood recognition and quality imaging inspection systems

dc.contributor.authorKryl, Martin
dc.contributor.authorDanys, Lukáš
dc.contributor.authorJaroš, René
dc.contributor.authorMartinek, Radek
dc.contributor.authorKodytek, Pavel
dc.contributor.authorBilík, Petr
dc.date.accessioned2021-02-26T12:03:16Z
dc.date.available2021-02-26T12:03:16Z
dc.date.issued2020
dc.description.abstractForestry is an undoubtedly crucial part of today's industry; thus, automation of certain visual tasks could lead to a significant increase in productivity and reduction of labor costs. Eye fatigue or lack of attention during manual visual inspections can lead to falsely categorized wood, thus leading to major loss of earnings. These mistakes could be eliminated using automated vision inspection systems. This article focuses on the comparison of researched methodologies related to wood type classification and wood defect detection/identification; hence, readers with an intention of building a similar vision-based system have summarized review to build upon.cs
dc.description.firstpageart. no. 3217126cs
dc.description.sourceWeb of Sciencecs
dc.description.volume2020cs
dc.identifier.citationJournal of Sensors. 2020, vol. 2020, art. no. 3217126.cs
dc.identifier.doi10.1155/2020/3217126
dc.identifier.issn1687-725X
dc.identifier.issn1687-7268
dc.identifier.urihttp://hdl.handle.net/10084/142889
dc.identifier.wos000576138100002
dc.language.isoencs
dc.publisherHindawics
dc.relation.ispartofseriesJournal of Sensorscs
dc.relation.urihttp://doi.org/10.1155/2020/3217126cs
dc.rightsCopyright © 2020 Martin Kryl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleWood recognition and quality imaging inspection systemscs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1687-725X-2020v2020an3217126.pdf
Size:
2.58 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: