An analysis of double Q-learning-based energy management strategies for TEG-powered IoT devices
| dc.contributor.author | Prauzek, Michal | |
| dc.contributor.author | Konečný, Jaromír | |
| dc.contributor.author | Paterová, Tereza | |
| dc.date.accessioned | 2024-04-25T06:54:52Z | |
| dc.date.available | 2024-04-25T06:54:52Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | The study presents a self-learning controller for managing the energy in an Internet of Things (IoT) device pow ered by energy harvested from a thermoelectric generator (TEG). The device’s controller is based on a double Q-learning (DQL) method; the hardware incorporates a TEG energy harvesting subsystem with a dc/dc converter, a load module with a microcon troller, and a LoRaWAN communications interface. The model is controlled according to adaptive measurements and transmis sion periods. The controller’s reward policy evaluates the level of charge available to the device. The controller applies and evaluates various learning parameters and reduces the learning rate over time. Using four years of historical soil temperature data in an experimental simulation of several controller config urations, the DQL controller demonstrated correct operation, a low learning rate, and high cumulative rewards. The best energy management controller operated with a completed cycle and missed cycle ratio of 98.5%. The novelty of the presented approach is discussed in relation to state-of-the-art methods in adaptive ability, learning processes, and practical applications of the device. | cs |
| dc.description.firstpage | 18919 | cs |
| dc.description.issue | 21 | cs |
| dc.description.lastpage | 18929 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 10 | cs |
| dc.identifier.citation | IEEE Internet of Things Journal. 2023, vol. 10, issue 21, p. 18919-18929. | cs |
| dc.identifier.doi | 10.1109/JIOT.2023.3283599 | |
| dc.identifier.issn | 2327-4662 | |
| dc.identifier.uri | http://hdl.handle.net/10084/152575 | |
| dc.identifier.wos | 001098109800046 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartofseries | IEEE Internet of Things Journal | cs |
| dc.relation.uri | https://doi.org/10.1109/JIOT.2023.3283599 | cs |
| dc.rights | © 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. | cs |
| dc.rights.access | openAccess | cs |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
| dc.subject | energy harvesting | cs |
| dc.subject | energy management | cs |
| dc.subject | Internet of Things (IoT) | cs |
| dc.subject | reinforcement learning | cs |
| dc.subject | thermoelectric generator (TEG) | cs |
| dc.title | An analysis of double Q-learning-based energy management strategies for TEG-powered IoT devices | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- 2327-4662-2023v10i21p18919.pdf
- Size:
- 2.57 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 718 B
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry kybernetiky a biomedicínského inženýrství / Publications of Department of Cybernetics and Biomedical Engineering (450)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals