Accelerating O-redox kinetics with carbon nanotubes for stable lithium-rich cathodes

dc.contributor.authorZhou, Junhua
dc.contributor.authorChen, Zhujie
dc.contributor.authorYu, Guo
dc.contributor.authorMa, Keni
dc.contributor.authorLian, Xueyu
dc.contributor.authorLi, Shuo
dc.contributor.authorShi, Qitao
dc.contributor.authorWang, Jiaqi
dc.contributor.authorGuo, Lingli
dc.contributor.authorLiu, Yu
dc.contributor.authorBachmatiuk, Alicja
dc.contributor.authorSun, Jingyu
dc.contributor.authorYang, Ruizhi
dc.contributor.authorChoi, Jin-Ho
dc.contributor.authorRümmeli, Mark H.
dc.date.accessioned2023-03-30T09:53:24Z
dc.date.available2023-03-30T09:53:24Z
dc.date.issued2022
dc.description.abstractLithium-rich cathodes (LRCs) show great potential to improve the energy density of commercial lithium-ion batteries owing to their cationic and anionic redox characteristics. Herein, a complete conductive network using carbon nanotubes (CNTs) additives to improve the poor kinetics of LRCs is fabricated. Ex situ X-ray photoelectron spectroscopy first demonstrates that the slope at a low potential and the following long platform can be assigned to the transition metal and oxygen redox, respectively. The combination of galvanostatic intermittent titration technique and electrochemical impedance spectroscopy further reveal that a battery with CNTs exhibited accelerated kinetics, especially for the O-redox process. Consequently, LRCs with CNTs exhibit a much better rate and cycling performance (approximate to 89% capacity retention at 2 C for over 200 cycles) than the Super P case. Eventually, TEM results imply that the improved electrochemical performance of the CNTs case also benefits from its more stable bulk and surface structures. Such a facile conductive additive modification strategy also provides a universal approach for the enhancement of the electron diffusion properties of other electrode materials.cs
dc.description.firstpageart. no. 2200449cs
dc.description.issue7cs
dc.description.sourceWeb of Sciencecs
dc.description.volume6cs
dc.identifier.citationSmall Methods. 2022, vol. 6, issue 7, art. no. 2200449.cs
dc.identifier.doi10.1002/smtd.202200449
dc.identifier.issn2366-9608
dc.identifier.urihttp://hdl.handle.net/10084/149236
dc.identifier.wos000797553000001
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesSmall Methodscs
dc.relation.urihttps://doi.org/10.1002/smtd.202200449cs
dc.rights© 2022 The Authors. Small Methods published by Wiley-VCH GmbHcs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/cs
dc.titleAccelerating O-redox kinetics with carbon nanotubes for stable lithium-rich cathodescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2366-9608-2022v6i7an2200449.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: